European Journal of Business Science and Technology 2024, 10(2):156-172 | DOI: 10.11118/ejobsat.2024.011

(Out)smart the Peer Group in Market Comparison: Building Business Valuation Multiples by Machine Learning

Veronika Staòková1
1 Prague University of Economics and Business, Czech Republic

Traditionally, market comparison requires identifying a peer group, which still poses unresolved practical difficulties today. This research seeks to provide valuable insights into the practicality, efficiency, and accuracy of machine learning in valuing a company. It employs a state-of-the-art machine learning technique, Gradient Boosting Decision Trees (GBDT), to predict the valuation multiple directly. A yearly dataset of U.S. public companies from 1980–2021 was used. The most common multiples (EV/EBITDA, EV/EBIT, P/E, and EV/Sales) were tested. The performance of GBDT was assessed against an industry-based method. GBDT consistently outperformed the alternative method with an average 24 percentage point decrease in the median average percentage error. The results support GBDT’s potential as a supplementary tool in valuation practice.

Keywords: market comparison method, Gradient Boosting Decision Trees, industry multiple, feature importance
JEL classification: G12, G32

Received: May 16, 2024; Revised: July 31, 2024; Accepted: September 3, 2024; Published: December 31, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Staòková, V. (2024). (Out)smart the Peer Group in Market Comparison: Building Business Valuation Multiples by Machine Learning. European Journal of Business Science and Technology10(2), 156-172. doi: 10.11118/ejobsat.2024.011
Download citation

References

  1. Alanis, E. 2022. Forecasting Betas with Random Forests. Applied Economics Letters, 29 (12), 1134-1138. DOI: 10.1080/13504851.2021.1912278 Go to original source...
  2. Alford, A. W. 1992. The Effect of the Set of Comparable Firms on the Accuracy of the Price-Earnings Valuation Method. Journal of Accounting Research, 30 (1), 94-108. DOI: 10.2307/2491093 Go to original source...
  3. An, J., Bhojraj, S. & Ng, D. T. 2010. Warranted Multiples and Future Returns. Journal of Accounting, Auditing & Finance, 25 (2), 143-169. DOI: 10.1177/0148558X1002500201 Go to original source...
  4. Baker, M. & Ruback, R. S. 1999. Estimating Industry Multiples. Harvard Business School.
  5. Bartram, S. M. & Grinblatt, M. 2018. Agnostic Fundamental Analysis Works. Journal of Financial Economics, 128 (1), 125-147. DOI: 10.1016/j.jfineco.2016.11.008 Go to original source...
  6. Bhojraj, S. & Lee, C. M. C. 2002. Who Is My Peer? A Valuation-Based Approach to the Selection of Comparable Firms. Journal of Accounting Research, 40 (2), 407-439. DOI: 10.1111/1475-679X.00054 Go to original source...
  7. Bhojraj, S., Lee, C. M. C. & Oler, D. K. 2003. What's My Line? A Comparison of Industry Classification Schemes for Capital Market Research. Journal of Accounting Research, 41 (5), 745-774. DOI: 10.1046/j.1475-679X.2003.00122.x Go to original source...
  8. Cheng, C. S. A. & McNamara, R. 2000. The Valuation Accuracy of the Price/Earnings and Price-Book Benchmark Valuation Methods. Review of Quantitative Finance and Accounting, 15 (4), 349-370. DOI: 10.1023/A:1012050524545 Go to original source...
  9. Damodaran, A. 2002. Valuation Multiples: First Principles [online]. Available at: https://pages.stern.nyu.edu/ adamodar/pdfiles/papers/multiples.pdf.
  10. De Franco, G., Hope, O.-K. & Larocque, S. 2015. Analysts' Choice of Peer Companies. Review of Accounting Studies, 20 (1), 82-109. DOI: 10.1007/s11142-014-9294-7 Go to original source...
  11. Ding, K., Peng, X. & Wang, Y. 2019. A Machine Learning-Based Peer Selection Method with Financial Ratios. Accounting Horizons, 33 (3), 75-87. DOI: 10.2308/acch-52454 Go to original source...
  12. Geertsema, P. & Lu, H. 2023. Relative Valuation with Machine Learning. Journal of Accounting Research, 61 (1), 329-376. DOI: 10.1111/1475-679X.12464 Go to original source...
  13. Hoberg, G. & Phillips, G. 2010. Product Market Synergies and Competition in Mergers and Acquisitions: A Text-Based Analysis. The Review of Financial Studies, 23 (10), 3773-3811. DOI: 10.1093/rfs/hhq053 Go to original source...
  14. Hoberg, G. & Phillips, G. 2016. Text-Based Network Industries and Endogenous Product Differentiation. Journal of Political Economy, 124 (5), 1423-1465. DOI: 10.1086/688176 Go to original source...
  15. James, G., Witten, D., Hastie, T., Tibshirani, R. & Taylor, J. E. 2023. An Introduction to Statistical Learning: With Applications in Python. Springer. Go to original source...
  16. Knudsen, J. O., Kold, S. & Plenborg, T. 2017. Stick to the Fundamentals and Discover Your Peers. Financial Analysts Journal, 73 (3), 85-105. DOI: 10.2469/faj.v73.n3.5 Go to original source...
  17. Lee, C. M. C., Ma, P. & Wang, C. C. Y. 2015. Search-Based Peer Firms: Aggregating Investor Perceptions through Internet Co-Searches. Journal of Financial Economics, 116 (2), 410-431. DOI: 10.1016/j.jfineco.2015.02.003 Go to original source...
  18. Liu, J., Nissim, D. & Thomas, J. 2002. Equity Valuation Using Multiples. Journal of Accounting Research, 40 (1), 135-172. DOI: 10.1111/1475-679X.00042 Go to original source...
  19. Liu, J., Nissim, D. & Thomas, J. 2007. Is Cash Flow King in Valuations? Financial Analysts Journal, 63 (2), 56-68. DOI: 10.2469/faj.v63.n2.4522 Go to original source...
  20. Pinto, J. E., Robinson, T. R. & Stowe, J. D. 2019. Equity Valuation: A Survey of Professional Practice. Review of Financial Economics, 37 (2), 219-233. DOI: 10.1002/rfe.1040 Go to original source...
  21. Plenborg, T. & Pimentel, R. C. 2016. Best Practices in Applying Multiples for Valuation Purposes. The Journal of Private Equity, 19 (3), 55-64. DOI: 10.3905/jpe.2016.19.3.055 Go to original source...
  22. Rhodes-Kropf, M., Robinson, D. T. & Viswanathan, S. 2005. Valuation Waves and Merger Activity: The Empirical Evidence. Journal of Financial Economics, 77 (3), 561-603. DOI: 10.1016/j.jfineco.2004.06.015 Go to original source...
  23. Sellhorn, T. 2020. Machine Learning und empirische Rechnungslegungsforschung: Einige Erkenntnisse und offene Fragen. Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung, 72 (1), 49-69. DOI: 10.1007/s41471-020-00086-1 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.