European Journal of Business Science and Technology 2023, 9(2):165-185 | DOI: 10.11118/ejobsat.2023.008

Fuzzy Model for Detection of Fraudulent Financial Statements: A Case Study of Lithuanian Micro and Small Enterprises

Erika Besusparienė1, Vesa A. Niskanen1,2
1 Vytautas Magnus University, Kaunas, Lithuania
2 University of Helsinki, Finland

90 per cent of enterprises in the European Union (EU), including Lithuania, are small enterprises that prepare the abridged financial statements. Verifying the fairness of these reports for stakeholders is challenged due to the lack of data. The aim of this research is to develop a novel model based on fuzzy logic for detecting fraudulent financial statements in micro and small enterprises by using financial ratios suitable for abridged financial statements. The results have shown that the developed fuzzy model enables estimation of the level of fraud in each individual element of accounting. Identifying each fraudulent accounting element allows us to gain insights into the areas where the enterprise has committed fraud. The proposed model has been designed to help small businesses reduce the risk, but it may also be used by public authorities as a tool for achieving greater business transparency.

Keywords: accounting, financial statement, fraud, fuzzy
JEL classification: G3, M41

Received: December 9, 2022; Revised: June 6, 2023; Accepted: June 20, 2023; Published: December 31, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Besusparienė, E., & Niskanen, V.A. (2023). Fuzzy Model for Detection of Fraudulent Financial Statements: A Case Study of Lithuanian Micro and Small Enterprises. European Journal of Business Science and Technology9(2), 165-185. doi: 10.11118/ejobsat.2023.008
Download citation

References

  1. Aghghaleh, S. F., Mohamed, Z. M. & Rahmat, M. M. 2016. Detecting Financial Statement Frauds in Malaysia: Comparing the Abilities of Beneish and Dechow Models. Asian Journal of Accounting & Governance, 7, 57-65. DOI 10.17576/AJAG-2016-07-05 Go to original source...
  2. Al Zaabi, O. S. H. 2011. Potential for the Application of Emerging Market Z-Score in UAE Islamic Banks. International Journal of Islamic and Middle Eastern Finance and Management, 4 (2), 158-173. DOI 10.1108/17538391111144498 Go to original source...
  3. Antonelli, M., Bernardo, D., Hagras, H. & Marcelloni, F. 2016. Multiobjective Evolutionary Optimization of Type-2 Fuzzy Rule-Based Systems for Financial Data Classification. IEEE Transactions on Fuzzy Systems, 25 (2), 249-264. DOI 10.1109/TFUZZ.2016.2578341 Go to original source...
  4. Arora, N. & Saini, J. R. 2013. Time Series Model for Bankruptcy Prediction via Adaptive Neuro-Fuzzy Inference System. International Journal of Hybrid Information Technology, 6 (2), 51-63.
  5. AVNT. 2018. Bankroto piežastys [online]. Available at: http://www.bankrotodep.lt/assets/Apklausos/Bankroto-prieastys2018-12-31.pdf. [Accessed 2022, May 17].
  6. AVNT. 2020. Juridinių asmenų bankroto ir restruktūrizavimo bei fizinių asmenų bankroto procesų 2020 m. sausio-birželio mėn. apžvalga [online]. Available at: http://www.avnt.lt/assets/Veiklos-sritys/Nemokumas/Nemokumo-duomenys-ir-analize/2020-07-31Nemokumo-APZVALGA2020-I-pusm.pdf [Accessed 2022, May 17].
  7. AVNT. 2021. Nemokumo procesų 2020 m. apžvalga [online]. Available at: https://avnt.lrv.lt/uploads/avnt/documents/files/APZVALGA_STATISTIKAI_2020%20m_skelbimui.pdf [Accessed 2022, May 17].
  8. Besusparienė, E., Vitunskaitė, E. & Butėnas, R. 2018. The Importance of Financial Accounting Information for Business Management. In FINIZ 2018 - The Role of Financial and Non-Financial Reporting in Responsible Business Operation, 75-81. DOI 10.15308/finiz-2018-75-81 Go to original source...
  9. Bhavani, G. & Amponsah, C. T. 2017. M-score and Z-score for Detection of Accounting Fraud. Accountancy Business and the Public Interest, 68-86.
  10. Chen, S., Goo, Y.-J. J. & Shen, Z.-D. 2014. A Hybrid Approach of Stepwise Regression, Logistic Regression, Support Vector Machine, and Decision Tree for Forecasting Fraudulent Financial Statements. The Scientific World Journal, 968712. DOI 10.1155/2014/968712 Go to original source...
  11. Čičak, J. & Vašiček, D. 2019. Determining the Level of Accounting Conservatism through the Fuzzy Logic System. Business Systems Research, 10 (1), 88-101. DOI 10.2478/bsrj-2019-0007 Go to original source...
  12. Deac, M. 2014. The New EU Accounting Directive-A Comparison of Reporting Requirements. Annals of ``Constantin Brâncuēi" University of Târgu Jiu, 2 (2), 197-205.
  13. Directive 2013/34/EU of the European Parliament and of the Council of 26 June 2013 on the Annual Financial Statements, Consolidated Financial Statements and Related Reports of Certain Types of Undertakings, Amending Directive 2006/43/EC of the European Parliament and of the Council and Repealing Council Directives 78/660/EEC and 83/349/EEC [online]. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32013L0034. [Accessed 2022, May 17].
  14. Drábková, Z. 2016. Models of Detection of Manipulated Financial Statements as Part of the Internal Control System of the Entity. ACRN Oxford Journal of Finance and Risk Perspectives Special Issue of Finance Risk and Accounting Perspectives, 5 (1), 227-235.
  15. Dyckhoff, H. & Pedrycz, W. 1984. Generalized Means as Model of Compensative Connectives. Fuzzy Sets and Systems, 14 (2), 143-154. DOI 10.1016/0165-0114(84)90097-6 Go to original source...
  16. European Commission. 2021. Annual Report on Europeans SMEs 2020/2021 [online]. Available at: https://ec.europa.eu/docsroom/documents/46062. [Accessed 2022, May 17].
  17. Georgiev, V. & Petrova, R. 2020. Testing the Usefulness and Predictive Power of the Adapted Altman Z-score Model for Bulgarian Public Companies. Economics and Computer Science, 1, 19-28.
  18. Hakami, T., Rahmat, M. M., Yaacob, M. H. & Saleh, N. M. 2020. Fraud Detection Gap between Auditor and Fraud Detection Models: Evidence from Gulf Cooperation Council. Asian Journal of Accounting & Governance, 13, 1-13. DOI 10.17576/AJAG-2020-13-01 Go to original source...
  19. Halilbegovic, S., Celebic, N., Cero, E., Buljubasic, E. & Mekic, A. 2020. Application of Beneish M-score Model on Small and Medium Enterprises in Federation of Bosnia and Herzegovina. Eastern Journal of European Studies, 11 (1), 146-163.
  20. Huda, S., Sarno, R. & Ahmad, T. 2015. Fuzzy MADM Approach for Rating of Process-Based Fraud. Journal of ICT Research and Applications, 9 (2), 111-128. DOI 10.5614/itbj.ict.res.appl.2015.9.2.1 Go to original source...
  21. Hũblová, E. 2019. The Current Problems of Harmonization of Accounting for Small and Medium-Sized Enterprises. Economic Research - Ekonomska Istraživanja, 32 (1), 604-621. DOI 10.1080/1331677X.2018.1561317 Go to original source...
  22. Kanapickienė, R. & Grundienė, Ž. 2014. Apgaulių finansinėse ataskaitose nustatymas finansinių santykinių rodiklių pagalba. Apskaitos ir finansų mokslas ir studijos: problemos ir perspektyvos, 9 (1), 34-43. DOI 10.15544/ssaf.2014.04 Go to original source...
  23. Kanapickienė, R. & Grundienė, Ž. 2015. The Model of Fraud Detection in Financial Statements by Means of Financial Ratios. Procedia - Social and Behavioral Sciences, 213, 321-327. DOI 10.1016/j.sbspro.2015.11.545 Go to original source...
  24. Karas, M. & Režōáková, M. 2020. Creating a New Bankruptcy Prediction Model: The Grey Zone Problem. In Crafting Global Competitive Economies: 2020 Vision Strategic Planning & Smart Implementation, 911-919. DOI 10.13140/2.1.1450.7208 Go to original source...
  25. Kauno apygardos teismo Civilinių bylų skyriaus teisėjas. 2021. Civilinė byla Nr. eB2-1474-413/2021 [online]. Available at: http://liteko.teismai.lt/viesasprendimupaieska/tekstas.aspx?id=c65f3952-2aa5-4560-88db-bbc14d7c1d93. [Accessed 2022, May 17].
  26. Kauno apygardos teismo teisėja. 2021. Civilinė byla Nr. B2-857-273/2021 [online]. Available at: http://liteko.teismai.lt/viesasprendimupaieska/tekstas.aspx?id=5851cb5d-c37a-464e-8355-584ff4efbb78. [Accessed 2022, May 17].
  27. Kauno apylinkės teismo Kauno rūmų teisėjas. 2021. Baudžiamoji byla Nr. 1-137-667/2021 [online]. Available at: http://liteko.teismai.lt/viesasprendimupaieska/tekstas.aspx?id=bdfd2bc1-dcff-4c88-a8b7-1745004eea90. [Accessed 2022, May 17].
  28. Klaipėdos apylinkės teismo Klaipėdos miesto rūmų teisėja. 2020. Civilinė byla Nr. E2-286-328/2020 [online]. Available at: https://e-teismai.lt/byla/235541315726086 [Accessed 2022, May 17].
  29. Lin, C.-C., Chiu, A.-A., Huang, S.-Y. & Yen, D.-C. 2015. Detecting the Financial Statement Fraud: The Analysis of the Differences between Data Mining Techniques and Experts' Judgments. Knowledge-Based Systems, 89, 459-470. DOI 10.1016/j.knosys.2015.08.011 Go to original source...
  30. MacCarthy, J. 2017. Using Altman Z-score and Beneish M-score Models to Detect Financial Fraud and Corporate Failure: A Case Study of Enron Corporation. International Journal of Finance and Accounting, 6 (6), 159-166. DOI 10.5923/j.ijfa.20170606.01 Go to original source...
  31. Maltoudoglou, L., Boutalis, Y. & Loukeris, N. 2015. A Fuzzy System Model for Financial Assessment of Listed Companies. In 2015 6th International Conference on Information, Intelligence, Systems and Applications (IISA), 1-6. DOI 10.1109/IISA.2015.7388049 Go to original source...
  32. Mamdani, E. H. & Assilian, S. 1975. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. International Journal of Man-Machine Studies, 7 (1), 1-13. DOI 10.1016/S0020-7373(75)80002-2 Go to original source...
  33. Mamo, J. & Shehu, I. 2015. Financial Statement Manipulation. The Application of Beneish M-score Model for Detecting Accounting Fraud in Economic Units in Albania. Knowledge, 11 (2), 126-130.
  34. Mavengere, K. 2015. Predicting Corporate Bankruptcy and Earnings Manipulation Using the Altman Z-score and Beneish M-score: The Case of Z Manufacturing Firm in Zimbabwe. International Journal of Management Sciences and Business Research, 4 (10), 8-14.
  35. Nawrocki, T. L. 2018. The Use of Fuzzy Logic in the Enterprise's Fundamental Strength Assessment. In Advances in Economics, Business and Management Research, 56, 415-418. Go to original source...
  36. Omar, N., Johari, Z. A. & Smith, M. 2017. Predicting Fraudulent Financial Reporting Using Artificial Neural Network. Journal of Financial Crime, 24 (2), 362-387. DOI 10.1108/JFC-11-2015-0061 Go to original source...
  37. Plungės apylinkės teismo Kretingos rūmų teisėja. 2020. Administracinių teisės pažeidimų/administracinių nusižengimų byla nr. A8.-104-1068/2020 [online]. Available at: https://e-teismai.lt/byla/103280510407678. [Accessed 2022, May 17].
  38. Rostamy-Malkhalifeh, M., Amiri, M. & Mehrkam, M. 2021. Predicting Financial Statement Fraud Using Fuzzy Neural Networks. Advances in Mathematical Finance & Applications, 6 (1), 137-145. DOI 10.22034/AMFA.2020.1892431.1370 Go to original source...
  39. Shakespeare, C. 2020. Reporting Matters: The Real Effects of Financial Reporting on Investing and Financing Decisions. Accounting and Business Research, 50 (5), 425-442. DOI 10.1080/00014788.2020.1770928 Go to original source...
  40. Taherinia, M. & Talebi, R. 2019. Ability of Fraud Triangle, Fraud Diamond, Beneish M Score, and Altman Z Score to Predict Financial Statements Fraud. Journal of Economic and Social Research, 18 (2), 213-226.
  41. Tiwari, S., Srivastava, R. & Gera, R. 2020. Investigation of Artificial Intelligence Techniques in Finance and Marketing. Procedia Computer Science, 173, 149-157. DOI 10.1016/j.procs.2020.06.019 Go to original source...
  42. Wells, J. T. 2001. Irrational Ratios. Journal of Accountancy, 192 (2), 80-83.
  43. Yager, R. R. 1988. On Ordered Weighted Averaging Aggregation Operators in Multi-Criteria Decision Making. IEEE Transactions on Systems, Man and Cybernetics, 18 (1), 183-190. DOI 10.1109/21.87068 Go to original source...
  44. Zhang, M. 2020. Artificial Intelligence and Application in Finance. In Proceedings of the 2020 11th International Conference on E-Education, E-Business, E-Management, and E-Learning, 317-322. DOI 10.1145/3377571.3379441 Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.