European Journal of Business Science and Technology 2023, 9(1):92-117 | DOI: 10.11118/ejobsat.2023.002

Factors Affecting Behavioural Intention to Use Mobile Health Applications among Obese People in Malaysia

Khairul Nazlin Kamaruzaman1, Zuhal Hussein1, Amily Fikry1
1 MARA Technological University, Shah Alam, Malaysia

Obesity is a significant public health issue as it seems to be the cause for high blood pressure, diabetes and other health problems. The human body cannot function efficiently if it has high body mass index score. According to the National Health and Morbidity Survey (NHMS), people with BMI score of ≥ 25 are being categorized as obese. One way to control obesity is to rely on the help of technology such as mobile health applications. In literature, there is a lack in research addressing obese people’s intention of using mobile health applications. Recognising the critical role of their behavioural intention to use mobile health applications, this research investigates the factors affecting behavioural intention to use mobile health applications. Adapting Consumer Acceptance Technology (CAT) model by Kulviwat et al. (2007) and Health Belief Model (HBM) developed by Glanz et al. (2008), this research examines factors of perceived cognition, perceived affection, perceived threat, compatibility, accessibility and attitude towards behavioural intention to use mobile health apps. To test the proposed framework, data were collected using quota sampling, while questionnaires were distributed to 500 obese people in the top 5 percent in the states with the obesity population in Malaysia, namely Malacca, Federal Territory of Putrajaya, Negeri Sembilan, Kedah and Perlis. Data collected were analysed using Partial Least Square (PLS) software. The results show that relationship between perceived cognition and perceived affection towards behavioural intention to use is partially significant, while significant relationship has been found between perceived threat, compatibility and accessibility and behavioural intention to use. Besides, perceived cognition and perceived affection partially support relationship on attitude. On the other hand perceived threat, compatibility and accessibility fully support relationship on attitude. Finally, the results demonstrate attitude partially mediates the relationship between perceived cognition and perceived affection, while attitude fully mediates the effect of perceived threat, compatibility, accessibility on behavioural intention to use. Findings provided empirical evidence on the collective effect of behavioural intention to use mobile health applications as well as independent effect of perceived cognition, perceived affection, perceived threat, compatibility and accessibility. Besides, findings suggested to encourage individual to use mobile health applications, while related takeholders should continually improve user perception on health applications.

Keywords: mobile health applications, obese people, behavioural intention to use, Malaysia
JEL classification: A10, A11

Received: August 23, 2022; Revised: February 23, 2023; Accepted: March 12, 2023; Published: June 30, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kamaruzaman, K.N., Hussein, Z., & Fikry, A. (2023). Factors Affecting Behavioural Intention to Use Mobile Health Applications among Obese People in Malaysia. European Journal of Business Science and Technology9(1), 92-117. doi: 10.11118/ejobsat.2023.002
Download citation

References

  1. Aday, L. A. & Andersen, R. 1974. A Framework for the Study of Access to Medical Care. Health Services Research, 9 (3), 208-220.
  2. Ahmad, A., Li, K., Feng, C. Asim, S. M., Yousif, A. & Ge, S. 2018. An Empirical Study of Investigating Mobile Applications Development Challenges. IEEE Access, 6, 17711-17728. DOI: 10.1109/ACCESS.2018.2818724. Go to original source...
  3. Alam, M. Z., Hoque, M. R., Hu, W. & Barua, Z. 2020. Factors Influencing the Adoption of mHealth Services in a Developing Country: A Patient-Centric Study. International Journal of Information Management, 50, 128-143. DOI: 10.1016/j.ijinfomgt.2019.04.016. Go to original source...
  4. Aldhahir, A. M., Alqahtani, J. S., Althobiani, M. A., Alghamdi, S. M., Alanazi, A. F., Alnaim, N., Alqarni, A. A. & Alwafi, H. 2022. Current Knowledge, Satisfaction, and Use of E-Health Mobile Application (Seha) Among the General Population of Saudi Arabia: A Cross-Sectional Study. Journal of Multidisciplinary Healthcare, 15, 667-678. DOI: 10.2147/JMDH.S355093. Go to original source...
  5. Alsaleh, D. & Thakur, R. 2019. Impact of Cognition, Affect, and Social Factors on Technology Adoption. Journal of the Academy of Marketing Science, 13 (2), 178-200. DOI: 10.1504/IJTMKT.2019.102266. Go to original source...
  6. Alushi, K., Hinterseher, I., Peters, F., Rother, U., Bischoff, M. S., Mylonas, S., Grambow, E., Gombert, A., Busch, A., Gray, D., Konstantinou, N., Stavroulakis, K., Horn, M., Görtz, H., Uhl, C., Federrath, H., Trute, H.-H., Kreutzburg, T. & Behrendt, C.-A. 2022. Distribution of Mobile Health Applications amongst Patients with Symptomatic Peripheral Arterial Disease in Germany: A Cross-Sectional Survey Study. Journal of Clinical Medicine, 11 (3), 498. DOI: 10.3390/jcm11030498. Go to original source...
  7. Alweshail, E. A. & Brahim, H. 2020. A Smartphone Application to Provide the Health Care Services at Home. In 2020 3rd International Conference on Computer Applications & Information Security (ICCAIS). DOI: 10.1109/ICCAIS48893.2020.9096758. Go to original source...
  8. Amicelle, A., Bus, J., El-Baba, T., Fuchs, C., Mordini, E., Rebera, A., Robinson, N., Trottier, D., Venier, S. & Wright, S. 2012. Report on Theoretical Frameworks and Previous Empirical Research. Project PACT Deliverable: D1.1.
  9. Arthurs, N., Tully, L., O'Malley, G. & Browne, S. 2022. Usability and Engagement Testing of mHealth Apps in Paediatric Obesity: A Narrative Review of Current Literature. International Journal of Environmental Research and Public Health, 19 (3), 1453. DOI: 10.3390/ijerph19031453. Go to original source...
  10. Atkinson, N. L. 2007. Developing a Questionnaire to Measure Perceived Attributes of eHealth Innovations. American Journal of Health Behavior, 31 (6), 612-621. DOI: 10.5993/AJHB.31.6.6. Go to original source...
  11. Bakken, S., Jia, H., Chen, E. S., Choi, J., John, R. M., Lee, N.-J., Mendonca, E., Roberts, W. D., Velez, O. & Currie, L. M. 2014. The Effect of a Mobile Health Decision Support System on Diagnosis and Management of Obesity, Tobacco Use, and Depression in Adults and Children. Journal for Nurse Practitioners, 10 (10), 774-780. DOI: 10.1016/j.nurpra.2014.07.017. Go to original source...
  12. Balapour, A., Reychav, I., Sabherwal, R. & Azuri, J. 2019. Mobile Technology Identity and Self-Efficacy: Implications for the Adoption of Clinically Supported Mobile Health Apps. International Journal of Information Management, 49, 58-68. DOI: 10.1016/j.ijinfomgt.2019.03.005. Go to original source...
  13. Barnett, J., Harricharan, M., Fletcher, D., Gilchrist, B. & Coughlan, J. 2015. MyPace: An Integrative Health Platform for Supporting Weight Loss and Maintenance Behaviors. IEEE Journal of Biomedical and Health Informatics, 19 (1), 109-116. DOI: 10.1109/JBHI.2014.2366832. Go to original source...
  14. Becker, M. H. 1974. The Health Belief Model and Personal Health Behavior. Thorofare, NJ: Slack. Go to original source...
  15. Blebil, A. Q., Sulaiman, S. A. S., Hassali, M. A., Dujaili, J. A. & Zin, A. M. 2014. Impact of Additional Counselling Sessions through Phone Calls on Smoking Cessation Outcomes among Smokers in Penang State, Malaysia. BMC Public Health, 14, 460. DOI: 10.1186/1471-2458-14-460. Go to original source...
  16. Bruner, G. C. & Kumar, A. 2005. Explaining Consumer Acceptance of Handheld Internet Devices. Journal of Business Research, 58 (5), 553-558. DOI: 10.1016/j.jbusres.2003.08.002. Go to original source...
  17. Bt wan Mohamed Radzi, C. W. J., Salarzadeh Jenatabadi, H. & Samsudin, N. 2020. mHealth Apps Assessment among Postpartum Women with Obesity and Depression. Healthcare, 8 (2), 72. DOI: 10.3390/healthcare8020072. Go to original source...
  18. Butcher, L., Phau, I. & Marchegiani, C. 2012. Extending the Consumer Acceptance of Technology (CAT) Model: Antecedents and Mediators. In Australian and New Zealand Marketing Academy Conference. Australian and New Zealand Marketing Academy.
  19. Castelnuovo, G., Manzoni, G. M., Pietrabissa, G., Corti, S., Giusti, E. M., Molinari, E. & Simpson, S. 2014. Obesity and Outpatient Rehabilitation using Mobile Technologies: The Potential mHealth Approach. Frontiers in Psychology, 5, 559. DOI: 10.3389/fpsyg.2014.00559. Go to original source...
  20. Chen, Y., Yang, L., Zhang, M. & Yang, J. 2018. Central or Peripheral? Cognition Elaboration Cues' Effect on Users' Continuance Intention of Mobile Health Applications in the Developing Markets. International Journal of Medical Informatics, 116, 33-45. DOI: 10.1016/j.ijmedinf.2018.04.008. Go to original source...
  21. Childers, T. L., Carr, C. L., Peck, J. & Carson, S. 2001. Hedonic and Utilitarian Motivations for Online Retail Shopping Behavior. Journal of Retailing, 77 (4), 511-535. DOI: 10.1016/S0022-4359(01)00056-2. Go to original source...
  22. Choi, Y., Kim, J.-S., Kwon, I. H., Kim, T., Kim, S. M., Cha, W., Jeong, J. & Lee, J.-H. 2020. Development of a Mobile Personal Health Record Application Designed for Emergency Care in Korea: Integrated Information from Multicenter Electronic Medical Records. Applied Sciences 10 (19), 6711. DOI: 10.3390/APP10196711. Go to original source...
  23. Chuah, S. H.-W., Rauschnabel, P. A., Krey, N., Nguyen, B., Ramayah, T. & Lade, S. 2016. Wearable Technologies: The Role of Usefulness and Visibility in Smartwatch Adoption. Computers in Human Behavior, 65, 276-284. DOI: 10.1016/j.chb.2016.07.047. Go to original source...
  24. Clark, L. A. & Watson, D. 1995. Constructing Validity: Basic Issues in Objective Scale Development. Psychological Assessment, 7 (3), 309-319. DOI: 10.1037/1040-3590.7.3.309. Go to original source...
  25. Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Lawrence Earlbaum Associates.
  26. Coughlin, S. S., Whitehead, M., Sheats, J. Q., Mastromonico, J. & Smith, S. 2016. A Review of Smartphone Applications for Promoting Physical Activity. Jacobs Journal of Community Medicine, 2 (1), 021.
  27. Dabholkar, P. A. & Bagozzi, R. P. 2002. An Attitudinal Model of Technology-Based Self-Service: Moderating Effects of Consumer Traits and Situational Factors. Journal of the Academy of Marketing Science, 30, 184-201. DOI: 10.1177/0092070302303001. Go to original source...
  28. Davis, F. D. 1989. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13 (3), 319-340. DOI: 10.2307/249008. Go to original source...
  29. Davis, F. D. & Venkatesh, V. 2004. Toward Preprototype User Acceptance Testing of New Information Systems: Implications for Software Project Management. IEEE Transactions on Engineering Management, 51 (1), 31-46. DOI: 10.1109/TEM.2003.822468. Go to original source...
  30. Demangeot, C. & Broderick, A. J. 2010. Consumer Perceptions of Online Shopping Environments: A Gestalt Approach. Psychology & Marketing, 27 (2), 117-140. DOI: 10.1002/mar.20323. Go to original source...
  31. Deng, Z. 2013. Understanding Public Users' Adoption of Mobile Health Service. International Journal of Mobile Communications, 11 (4), 351-373. DOI: 10.1504/IJMC.2013.055748. Go to original source...
  32. Deng, Z., Mo, X. & Liu, S. 2014. Comparison of the Middle-Aged and Older Users' Adoption of Mobile Health Services in China. International Journal of Medical Informatics, 83 (3), 210-224. DOI: 10.1016/j.ijmedinf.2013.12.002. Go to original source...
  33. Devos, P., Min Jou, A., De Waele, G. & Petrovic, M. 2015. Design for Personalized Mobile Health Applications for Enhanced Older People Participation. European Geriatric Medicine, 6 (6), 593-597. DOI: 10.1016/j.eurger.2015.10.004. Go to original source...
  34. Dhiman, N., Arora, N., Dogra, N. & Gupta, A. 2019. Consumer Adoption of Smartphone Fitness Apps: An Extended UTAUT2 Perspective. Journal of Indian Business Research, 12 (3), 363-388. DOI: 10.1108/JIBR-05-2018-0158. Go to original source...
  35. Dounavi, K. & Tsoumani, O. 2019. Mobile Health Applications in Weight Management: A Systematic Literature Review. American Journal of Preventive Medicine, 56 (6), 894-903. DOI: 10.1016/j.amepre.2018.12.005. Go to original source...
  36. Dwivedi, Y. K., Shareef, M. A., Simintiras, A. C., Lal, B. & Weerakkody, V. 2016. A Generalised Adoption Model for Services: A Cross-Country Comparison of Mobile Health (m-Health). Government Information Quarterly, 33 (1), 174-187. DOI: 10.1016/j.giq.2015.06.003. Go to original source...
  37. Faziharudean, T. M. & Li-Ly, T. 2011. Consumers' Behavioral Intentions to Use Mobile Data Services in Malaysia. African Journal of Business Management, 5 (5), 1811-1821. DOI: 10.5897/AJBM10.794. Go to original source...
  38. Fishbein, M. & Ajzen, I. 1975. Belief, Attitude, Intention and Behaviour: An Introduction to Theory and Research. Reading, MA: Addison-Wesley.
  39. Gao, G., Lang, R., Oxoby, R. J., Mourali, M., Sheikh, H., Fullerton, M. M., Tang, T., Manns, B. J., Marshall, D. A., Hu, J. & Benham, J. L. 2022. Drivers of Downloading and Reasons for not Downloading COVID-19 Contact Tracing and Exposure Notification Apps: A National Cross-Sectional Survey. PLoS ONE, 17 (7), e0269783. DOI: 10.1371/journal.pone.0269783. Go to original source...
  40. Gentry, L. & Calantone, R. 2002. A Comparison of Three Models to Explain Shop-Bot Use on the Web. Psychology & Marketing, 19 (11), 945-956. DOI: 10.1002/mar.10045. Go to original source...
  41. Gessa, A., Jiménez, A. & Sancha, P. 2020. Open Innovation in Digital Healthcare: Users' Discrimination between Certified and Non-Certified mHealth Applications. Journal of Open Innovation: Technology, Market, and Complexity, 6 (4), 130. DOI: 10.3390/joitmc6040130. Go to original source...
  42. Ghee, L. K. 2016. A Review of Adult Obesity Research in Malaysia. Medical Journal of Malaysia, 71, 1-19.
  43. Glanz, K., Rimer, B. K. & Viswanath, K. (eds.). 2008. Health Behaviour and Health Education: Theory, Research, and Practice. 4th ed. John Wiley & Sons.
  44. Gold, A. H., Malhotra, A. & Segars, A. H. 2001. Knowledge Management: An Organizational Capabilities Perspective. Journal of Management Information Systems, 18 (1), 185-214. DOI: 10.1080/07421222.2001.11045669. Go to original source...
  45. Hair, J. F., Hult, G. T. M., Ringle, C. M. & Sarstedt, M. 2016. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2nd ed. Sage Publications.
  46. Hall, M., Elliott, K. & Meng, J. G. 2015. Predicting Consumers' Attitude toward Their Facebook Experience: the Influence of Cognitive and Affective Factors. Journal of Technology Research, 7, 1-20.
  47. Harous, S., El Menshawy, M., Serhani, M. A. & Benharref, A. 2018. Mobile Health Architecture for Obesity Management Using Sensory and Social Data. Informatics in Medicine Unlocked, 10, 27-44. DOI: 10.1016/j.imu.2017.12.005. Go to original source...
  48. Harris, M. A., Brookshire, R. & Chin, A. G. 2016. Identifying Factors Influencing Consumers' Intent to Install Mobile Applications. International Journal of Information Management, 36 (3), 441-450. DOI: 10.1016/j.ijinfomgt.2016.02.004. Go to original source...
  49. Henseler, J., Hubona, G. & Ray, P. A. 2016. Using PLS Path Modeling in New Technology Research: Updated Guidelines. Industrial Management & Data Systems, 116 (1), 2-20. DOI: 10.1108/IMDS-09-2015-0382. Go to original source...
  50. Higgins, J. P. 2016. Smartphone Applications for Patients' Health and Fitness. The American Journal of Medicine, 129 (1), 11-19. DOI: 10.1016/j.amjmed.2015.05.038. Go to original source...
  51. Hoque, R. & Sorwar, G. 2017. Understanding Factors Influencing the Adoption of mHealth by the Elderly: An Extension of the UTAUT Model. International Journal of Medical Informatics, 101, 75-84. DOI: 10.1016/j.ijmedinf.2017.02.002. Go to original source...
  52. Hsu, C.-L. & Liao, Y.-C. 2014. Exploring the Linkages between Perceived Information Accessibility and Microblog Stickiness: The Moderating Role of a Sense of Community. Information & Management, 51 (7), 833-844. DOI: 10.1016/j.im.2014.08.005. Go to original source...
  53. Huang, M., Ali, R. & Liao, J. 2017. The Effect of User Experience in Online Games on Word of Mouth: A Pleasure-Arousal-Dominance (PAD) Model Perspective. Computers in Human Behavior, 75, 329-338. DOI: 10.1016/j.chb.2017.05.015. Go to original source...
  54. Hussein, Z. 2018. The Advantages and Disadvantages of the Mhealth Applications and the Intention to Use among Smartphone Users. International Journal of Mechanical Engineering and Technology, 9 (12), 943-947.
  55. Hussein, Z., Oon, S. W. & Fikry, A. 2017. Consumer Attitude: Does It Influencing the Intention to Use mHealth? Procedia Computer Science, 105, 340-344. DOI: 10.1016/j.procs.2017.01.231. Go to original source...
  56. Igbaria, M. & Parasuraman, S. 1989. A Path Analytic Study of Individual Characteristics, Computer Anxiety and Attitudes Toward Microcomputers. Journal of Management, 15 (3), 373-388. DOI: 10.1177/014920638901500302. Go to original source...
  57. Institute for Public Health. 2015. National Health and Morbidity Survey 2015. Vol. II: Non-Communicable Diseases, Risk Factors & Other Health Problems. ISBN 978-983-2387-23-7.
  58. Kaium, M. A., Bao, Y., Alam, M. Z. & Hoque, M. R. 2020. Understanding Continuance Usage Intention of mHealth in a Developing Country: An Empirical Investigation. International Journal of Pharmaceutical and Healthcare Marketing, 14 (2), 251-272. DOI: 10.1108/IJPHM-06-2019-0041. Go to original source...
  59. Kao, C.-K. & Liebovitz, D. M. 2017. Consumer Mobile Health Apps: Current State, Barriers, and Future Directions. PM&R: The Journal of Injury, Function and Rehabilitation, 9 (5), 106-115. DOI: 10.1016/j.pmrj.2017.02.018. Go to original source...
  60. Karahoca, A., Karahoca, D. & Aksöz, M. 2018. Examining Intention to Adopt to Internet of Things in Healthcare Technology Products. Kybernetes, 47 (4), 742-770. DOI: 10.1108/K-02-2017-0045. Go to original source...
  61. Kim, C., Mirusmonov, M. & Lee, I. 2010. An Empirical Examination of Factors Influencing the Intention to Use Mobile Payment. Computers in Human Behavior, 26 (3), 310-322. DOI: 10.1016/j.chb.2009.10.013. Go to original source...
  62. Kim, H.-S., Ahn, J. & No, J.-K. 2012. Applying the Health Belief Model to College Students' Health Behavior. Nutrition Research and Practice, 6 (6), 551-558. DOI: 10.4162/nrp.2012.6.6.551. Go to original source...
  63. Kim, K. K., Logan, H. C., Young, E. & Sabee, C. M. 2014. Youth-Centered Design and Usage Results of the iN Touch Mobile Self-Management Program for Overweight/Obesity. Personal and Ubiquitous Computing, 19, 59-68. DOI: 10.1007/s00779-014-0808-x. Go to original source...
  64. Klaver, N. S., van de Klundert, J., van den Broek, R. J. G. M. & Askari, M. 2021. Relationship Between Perceived Risks of Using mHealth Applications and the Intention to Use Them Among Older Adults in the Netherlands: Cross-Sectional Study. JMIR mHealth and uHealth, 9 (8), e26845. DOI: 10.2196/26845. Go to original source...
  65. Kline, R. B. 2015. Principles and Practice of Structural Equation Modelling. 4th ed. New York: Guilford Press.
  66. Kline, S. 2015. Moral Panic, Reflexive Embodiment and Teen Obesity in the USA: A Case Study of the Impact of `Weight Bias'. Young Consumers, 16 (4), 407-419. DOI: 10.1108/YC-12-2014-00495. Go to original source...
  67. Kulviwat, S., Bruner, G. C., Kumar, A., Nasco, S. A. & Clark, T. 2007. Toward a Unified Theory of Consumer Acceptance Technology. Psychology & Marketing, 24 (12), 1059-1084. DOI: 10.1002/mar.20196. Go to original source...
  68. Kulviwat, S., Zhang, Y., Fan, J. & Zheng, L. 2016. Understanding Consumer Shopping Behaviour: A Comparison of Three Theories of Emotions in Predicting Online Flow. International Journal of Electronic Marketing and Retailing, 7 (1), 3-21. DOI: 10.1504/IJEMR.2016.075322. Go to original source...
  69. Kuo, K.-M., Liu, C.-F. & Ma, C.-C. 2013. An Investigation of the Effect of Nurses' Technology Readiness on the Acceptance of Mobile Electronic Medical Record Systems. BMC Medical Informatics and Decision Making, 13, 88. DOI: 10.1186/1472-6947-13-88. Go to original source...
  70. Lee, H. H. & Chang, E. 2011. Consumer Attitudes Toward Online Mass Customization: An Application of Extended Technology Acceptance Model. Journal of Computer-Mediated Communication, 16 (2), 171-200. DOI: 10.1111/j.1083-6101.2010.01530.x. Go to original source...
  71. Lee, M.-B., Suh, K.-S. & Whang, J. 2003. The Impact of Situation Awareness Information on Consumer Attitudes in the Internet Shopping Mall. Electronic Commerce Research and Applications, 2 (3), 254-265. DOI: 10.1016/S1567-4223(03)00028-0. Go to original source...
  72. Lee, J. Y., Wong, C. P. & Lee, S. W. H. 2020. M-Health Views and Perception among Malaysian: Findings from a Survey among Individuals Living in Selangor. mHealth, 6. DOI: 10.21037/mhealth.2019.09.16. Go to original source...
  73. Lim, S., Xue, L., Yen, C. C., Chang, L., Chan, H. C., Tai, B. C., Duh, H. B. L. & Choolani, M. 2011. A Study on Singaporean Women's Acceptance of Using Mobile Phones to Seek Health Information. International Journal of Medical Informatics, 80 (12), 189-202. DOI: 10.1016/j.ijmedinf.2011.08.007. Go to original source...
  74. Lyzwinski, L. N., Caffery, L. J., Bambling, M. & Edirippulige, S. 2017. Consumer Perspectives on mHealth for Weight Loss: A Review of Qualitative Studies. Journal of Telemedicine and Telecare, 24 (4). DOI: 10.1177/1357633X17692722. Go to original source...
  75. Maarop, N. & Win, K. T. 2012. Understanding the Need of Health Care Providers for Teleconsultation and Technological Attributes in Relation to the Acceptance of Teleconsultation in Malaysia: A Mixed Methods Study. Journal of Medical Systems, 36 (5), 2881-2892. DOI: 10.1007/s10916-011-9766-2. Go to original source...
  76. Mahat, J., Ayub, A. F. M., Luan, S. & Wong. 2012. An Assessment of Students' Mobile Self-Efficacy, Readiness and Personal Innovativeness towards Mobile Learning in Higher Education in Malaysia. Procedia - Social and Behavioral Sciences, 64 (9), 284-290. DOI: 10.1016/j.sbspro.2012.11.033. Go to original source...
  77. Malaysian Medical Association. 2016. The Medical Journal of Malaysia [online]. 4th Asia Pacific Conference on Public Health. Vol. 70. Available at: http://www.e-mjm.org/2015/v70s1/Asia-Pacific-Conference-on-public-health.pdf.
  78. Meri, A., Hasan, M. K., Danaee, M., Jaber, M., Jarrar, M., Safei, N., Dauwed, M., Abd, S. K. & Al-bsheish, M. 2019. Modelling the Utilization of Cloud Health Information Systems in the Iraqi Public Healthcare Sector. Telematics and Informatics, 36, 132-146. DOI: 10.1016/j.tele.2018.12.001. Go to original source...
  79. Miah, S. J., Hasan, N., Hasan, R. & Gammack, J. 2017. Healthcare Support for Underserved Communities Using a Mobile Social Media Platform. Information Systems, 66, 1-12. DOI: 10.1016/j.is.2017.01.001. Go to original source...
  80. Naddeo, S., Verde, L., Forastiere, M., De Pietro, G. & Sannino, G. 2017. A Real-time m-Health Monitoring System: An Integrated Solution Combining the Use of Several Wearable Sensors and Mobile Devices. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 5 HEALTHINF: SmartMedDev, 545-552. DOI: 10.5220/0006296105450552. Go to original source...
  81. Nasco, S. A., Kulviwat, S., Kumar, A. & Bruner, G. C. 2008. The CAT Model: Extensions and Moderators of Dominance in Technology Acceptance. Psychology & Marketing, 25 (10), 978-1005. DOI: 10.1002/mar.20249. Go to original source...
  82. National Institutes of Health. 2019. National Health and Morbidity Survey 2019: Key Findings [online]. Available at: https://iptk.moh.gov.my/images/technical_report/2020/4_Infographic_Booklet_NHMS_2019_-_English.pdf.
  83. Ndayizigamiye, P. & Maharaj, M. 2017. Determinants of Mobile Health Adoption in Burundi. The African Journal of Information Systems, 9 (3), 171-191.
  84. Olok, G. T., Yagos, W. O. & Ovuga, E. 2015. Knowledge and Attitudes of Doctors towards E-Health Use in Healthcare Delivery in Government and Private Hospitals in Northern Uganda: A Cross-Sectional Study. BMC Medical Informatics and Decision Making, 15, 87. DOI: 10.1186/s12911-015-0209-8. Go to original source...
  85. Pai, R. R. & Alathur, S. 2019. Determinants of Individuals' Intention to Use Mobile Health: Insights from India. Transforming Government: People, Process and Policy, 13 (3/4), 306-326. DOI: 10.1108/TG-04-2019-0027. Go to original source...
  86. Pai, R. R. & Alathur, S. 2021. Mobile Health Intervention and COVID-19 Pandemic Outbreak: Insights from Indian Context. International Journal of Health Governance, 26 (1), 42-50. DOI: 10.1108/IJHG-04-2020-0043. Go to original source...
  87. Palos-Sanchez, P. R., Saura, J. R., Martin, M. Á. R. & Aguayo-Camacho, M. 2021. Toward a Better Understanding of the Intention to Use mHealth Apps: Exploratory Study. JMIR mHealth and uHealth, 9 (9), e27021. DOI: 10.2196/27021. Go to original source...
  88. Park, E. & del Pobil, A. P. 2013. Extending the Technology Acceptance Model in Remote Pointing Technology: Identifying the Role of Perceived Mobility and Control. Sensor Review, 33 (1), 40-47. DOI: 10.1108/02602281311294333. Go to original source...
  89. Qasim, M. M., Zulkifli, A. N., Ahmad, M., Omar, M. & Abu Bakar, J. A. 2015. Parent's Perception towards the Adoption of Mobile Application for Monitoring Their Children's Obesity Status. ARPN Journal of Engineering and Applied Sciences, 10 (3), 977-985.
  90. Ramanathan, N., Swendeman, D., Comulada, W. S., Estrin, D. & Rotheram-Borus, M. J. 2016. Identifying Preferences for Mobile Health Applications for Self-Monitoring and Self-Management: Focus Group Findings from HIV-Positive Persons and Young Mothers. International Journal of Medical Informatics, 82 (4), 38-46. DOI: 10.1016/j.ijmedinf.2012.05.009. Go to original source...
  91. Research2Guidance. 2015. mHealth App Development Economic 2015 [online]. Available at: http://research2guidance.com/r2g/r2g-mHealth-App-Developer-Economics-2015.pdf.
  92. Rogers, E. M. 2003. Diffusion of Innovations. 3rd ed. New York: The Free Press.
  93. Saunders, G. H., Frederick, M. T., Silverman, S. & Papesh, M. 2013. Application of the Health Belief Model: Development of the Hearing Beliefs Questionnaire (HBQ) and its Associations with Hearing Health Behaviors. International Journal of Audiology, 52 (8), 558-567. DOI: 10.3109/14992027.2013.791030. Go to original source...
  94. Saxon, L. A. 2016. Mobile Health Application Solutions. Circulation: Arrhythmia and Electrophysiology, 9 (2), e002477. DOI: 10.1161/CIRCEP.115.002477. Go to original source...
  95. Schomakers, E.-M., Lidynia, C., Vervier, L. S., Valdez, A. C. & Ziefle, M. 2022. Applying an Extended UTAUT2 Model to Explain User Acceptance of Lifestyle and Therapy Mobile Health Apps: Survey Study. JMIR mHealth and uHealth, 10 (1), e27095. DOI: 10.2196/27095. Go to original source...
  96. Selvaraj, S. N. & Sriram, A. 2022. The Quality of Indian Obesity-Related mHealth Apps: PRECEDE-PROCEED Model-Based Content Analysis. JMIR mHealth and uHealth, 10 (5), e15719. DOI: 10.2196/15719. Go to original source...
  97. Shareef, M. A., Kumar, V. & Kumar, U. 2014. Predicting Mobile Health Adoption Behaviour: A Demand Side Perspective. Journal of Customer Behaviour, 13 (3), 187-205. DOI: 10.1362/147539214X14103453768697. Go to original source...
  98. Sharifi, S. S. 2013. Impacts of the Trilogy of Emotion on Future Purchase Intentions in Products of High Involvement Under the Mediating Role of Brand Awareness. European Business Review, 26 (1), 43-63. DOI: 10.1108/EBR-12-2012-0072. Go to original source...
  99. Subramanian, R. 2015. Diet, Exercise and Smartphones - A Content Analysis of Mobile Health Applications for Weight Loss. Dissertation. Southern Illinois University Carbondale.
  100. Teo, T. S. H., Srivastava, S. C. & Jiang, L. 2008. Trust and Electronic Government Success: An Empirical Study. Journal of Management Information Systems, 25 (3), 99-132. DOI: 10.2753/MIS0742-1222250303. Go to original source...
  101. Thorpe, K. E., Florence, C. S., Howard, D. H. & Joski, P. 2004. The Impact of Obesity on Rising Medical Spending. Health Affairs, 23 (1). DOI: 10.1377/hlthaff.W4.480. Go to original source...
  102. Vlahu-Gjorgievska, E., Mulakaparambil Unnikrishnan, S. & Win, K. T. 2018. mHealth Applications: A Tool for Behaviour Change in Weight Management. Studies in Health Technology and Informatics, 252, 158-163. DOI: 10.3233/978-1-61499-890-7-158. Go to original source...
  103. Wang, B. R., Park, J.-Y., Chung, K. & Choi, I. Y. 2014. Influential Factors of Smart Health Users According to Usage Experience and Intention to Use. Wireless Personal Communications, 79, 2671-2683. DOI: 10.1007/s11277-014-1769-0. Go to original source...
  104. Wang, Y., Xue, H., Huang, Y., Huang, L. & Zhang, D. 2017. A Systematic Review of Application and Effectiveness of mHealth Interventions for Obesity and Diabetes Treatment and Self-Management. Advances in Nutrition, 8 (3), 449-462. DOI: 10.3945/an.116.014100. Go to original source...
  105. Wei, J., Vinnikova, A., Lu, L. & Xu, J. 2021. Understanding and Predicting the Adoption of Fitness Mobile Apps: Evidence from China. Health Communication, 36 (8), 950-961. DOI: 10.1080/10410236.2020.1724637. Go to original source...
  106. World Health Organization (WHO). 2018. World Health Statistic 2018: Monitoring Health for the Sustainable Goals [online]. Available at: https://apps.who.int/iris/rest/bitstreams/1137482/retrieve.
  107. Wu, I.-L., Li, J.-Y. & Fu, C.-Y. 2011. The Adoption of Mobile Healthcare by Hospital's Professionals: An Integrative Perspective. Decision Support Systems, 51 (3), 587-596. DOI: 10.1016/j.dss.2011.03.003. Go to original source...
  108. Ye, Q., Deng, Z., Chen, Y., Liao, J., Li, G. & Lu, Y. 2019. How Resource Scarcity and Accessibility Affect Patients' Usage of Mobile Health in China: Resource Competition Perspective. JMIR mHealth and uHealth, 7 (8), e13491. DOI: 10.2196/13491. Go to original source...
  109. Zailani, S., Iranmanesh, M., Nikbin, D. & Beng, J. K. C. 2014. Determinants of RFID Adoption in Malaysia's Healthcare Industry: Occupational Level as a Moderator. Journal of Medical Systems, 39 (1), 172. DOI: 10.1007/s10916-014-0172-4. Go to original source...
  110. Zailani, S., Gilani, M. S., Nikbin, D. & Iranmanesh, M. 2014. Determinants of Telemedicine Acceptance in Selected Public Hospitals in Malaysia: Clinical Perspective. Journal of Medical Systems, 38 (9), 111. DOI: 10.1007/s10916-014-0111-4. Go to original source...
  111. Zhang, X., Liu, S., Wang, L., Zhang, Y. & Wang, J. 2019. Mobile Health Service Adoption in China: Integration of Theory of Planned Behavior, Protection Motivation Theory and Personal Health Differences. Online Information Review, 44 (1), 1-23. DOI: 10.1108/OIR-11-2016-0339. Go to original source...
  112. Zhao, Y., Ni, Q. & Zhou, R. 2018. What Factors Influence the Mobile Health Service Adoption? A Meta-Analysis and the Moderating Role of Age. International Journal of Information Management, 43, 342-350. DOI: 10.1016/j.ijinfomgt.2017.08.006. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.