European Journal of Business Science and Technology 2022, 8(1):19-41 | DOI: 10.11118/ejobsat.2022.005
The Cost of Renewable Electricity and Energy Storage in Germany
- 1 Mendel University in Brno, Czech Republic
Renewable power generation, especially wind power and solar power, is experiencing a strong expansion worldwide and especially in Germany. With high shares of these methods of power generation, energy storage is needed to enable a demand-oriented power supply even with weather-related fluctuations in generation. Against the background of a power supply based entirely on wind and solar power, the question arises as to what total costs arise with the inclusion of storage systems, which is the subject of this article. The calculation model uses hourly resolved real data of German electricity generation from the years 2012 to 2018 to determine the required storage capacities. The electricity generation costs used range between 0.02 and 0.10 EUR/kW/h. The costs for the considered energy storages are calculated based on the Levelised Cost of Storage (LCOS) metric. It is concluded that in an electricity supply system based on wind and solar power, it is not the electricity generation that causes the greatest costs, but the storage. With electricity generation costs of 0.06 EUR/kW/h, the total system costs are in a range of 0.19 to 0.28 EUR/kW/h. This means that, in terms of costs, energy storage is more significant than electricity generation.
Keywords: energy storage, renewable energy sources, Germany, levelised cost of storage
JEL classification: C32, C53, O13, Q40
Received: December 4, 2021; Revised: March 14, 2022; Accepted: May 5, 2022; Published: July 31, 2022 Show citation
References
- 50Hertz, Amprion, TenneT & TransnetBW. 2019. Bericht der deutschen Übertragungsnetzbetreiber zur Leistungsbilanz 2017-2021 [online]. Netztransparenz. Available at: https://www.netztransparenz.de/portals/1/Content/Ver%C3%B6ffentlichungen/Bericht_zur_Leistungsbilanz_2018.pdf. [Accessed 2021, February 12].
- Akhil, A. A., Huff, G., Currier, A. B., Kaun, B. C., Rastler, D. M., Chen, S. B., Cotter, A. L., Bradshaw, D. T. & Gauntlett, W. D. 2015. DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA. Sandia Report, SAND2013-5131.
Go to original source...
- BMWi. 2021. Die Energie der Zukunft [online]. Available at: https://www.bmwi.de. [Accessed 2021, February 7].
- Cebulla, F. 2017. Storage Demand in Highly Renewable Energy Scenarios for Europe: The Influence of Methodology and Data Assumptions in Model-Based Assessments. PhD Thesis. Universität Stuttgart.
- de Bucy, J. 2016. The Potential of Power-to-Gas [online]. Enea Consulting. Available at: https://www.enea-consulting.com/static/3663dbb115f833de23e4c94c8fa399ec/enea-the-potential-of-power-to-gas.pdf. [Accessed 2020, October 16].
- ENTSOE. 2016a. Specific National Considerations [online]. Available at: https://eepublicdownloads.entsoe.eu/clean-documents/Publications/Statistics/Specific_national_considerations.pdf. [Accessed 2021, July 25].
- ENTSOE. 2016b. Guidelines for Monthly Statistics Data Collection [online]. Available at: https://eepublicdownloads.entsoe.eu/clean-documents/Publications/Statistics/MS_guidelines2016.pdf. [Accessed 2021, July 25].
- Fuchs, G., Lunz, B., Leuthold, M. & Sauer, D. U. 2012. Technology Overview on Electricity Storage. Technical Report. Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University. DOI: 10.13140/RG.2.1.5191.5925.
Go to original source...
- Giovinetto, A. & Eller, A. 2019. Comparing the Costs of Long Duration Energy Storage Technologies [online]. Navigant Consulting. Available at: https://www.slenergystorage.com/documents/20190626_Long_Duration%20Storage_Costs.pdf. [Accessed 2020, December 20].
- Hameer, S. & van Niekerk, J. L. 2015. A Review of Large-Scale Electrical Energy Storage. International Journal of Energy Research, 39 (9), 1179-1195. DOI: 10.1002/er.3294.
Go to original source...
- Heide, D., von Bremen, L., Greiner, M., Hoffmann, C., Speckmann, M. & Bofinger, S. 2010. Seasonal Optimal Mix of Wind and Solar Power in a Future, Highly Renewable Europe. Renewable Energy, 35 (11), 2483-2489. DOI: 10.1016/j.renene.2010.03.012.
Go to original source...
- IRENA. 2019a. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects [online]. International Renewable Energy Agency. Available at: https://irena.org/-/media/Files/IRENA/Agency/Publication/2019/Nov/IRENA_Future_of_Solar_PV_2019.pdf. [Accessed 2021, July 10].
- IRENA. 2019b. Future of Wind: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects [online]. International Renewable Energy Agency. Available at: https://www.irena.org/-/media/files/irena/agency/publication/2019/oct/irena_future_of_wind_2019.pdf. [Accessed 2021, July 10].
- Jülch, V. 2016. Comparison of Electricity Storage Options Using Levelized Cost of Storage (LCOS) Method. Applied Energy, 183, 1594-1606. DOI: 10.1016/j.apenergy.2016.08.165.
Go to original source...
- Kost, C., Shammugam, S., Jülch, V., Nguyen, H.-T. & Schlegl, T. 2018. Stromgestehungskosten Erneuerbare Energien [online]. Available at: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2018_ISE_Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf. [Accessed 2021, July 3].
- Lai, C. S. & Locatelli, G. 2021. Economic and Financial Appraisal of Novel Large-Scale Energy Storage Technologies. Energy, 214. DOI: 10.1016/j.energy.2020.118954.
Go to original source...
- Lai, C. S. & McCulloch, M. D. 2017. Levelized Cost of Electricity for Solar Photovoltaic and Electrical Energy Storage. Applied Energy, 190, 191-203. DOI: 10.1016/j.apenergy.2016.12.153.
Go to original source...
- Lazard. 2020a. Lazard's Levelized Cost of Energy Analysis - Version 13.0 [online]. Available at: https://www.lazard.com/media/451086/lazards-levelized-cost-of-energy-version-130-vf.pdf. [Accessed 2020, March 28].
- Lazard. 2020b. Lazard's Levelized Cost of Storage Analysis - Version 6.0 [online]. Available at: https://www.lazard.com/media/451418/lazards-levelized-cost-of-storage-version-60.pdf. [Accessed 2020, December 20].
- Mayr, F. & Beushausen, H. 2016. How to Determine Meaningful, Comparable Costs of Energy Storage [online]. Apricum - The Cleantech Advisory. Available at: https://apricum-group.com/how-to-determine-meaningful-comparable-costs-of-energy-storage/. [Accessed 2020, December 13].
- Mongird, K., Viswanathan, V. V., Balducci, P. J., Alam, M. J. E., Fotedar, V., Koritarov, V. S. & Hadjerioua, B. 2019. Energy Storage Technology and Cost Characterization Report [online]. U.S. Department of Energy Office of Scientific and Technical Information. Available at: https://www.osti.gov/biblio/1573487-energy-storage-technology-cost-characterization-report. DOI: 10.2172/1573487.
Go to original source...
- Mostafa, M. H., Abdel Aleem, S. H. E., Ali, S. G., Ali, Z. M. & Abdelaziz, A. Y. 2020. Techno-Economic Assessment of Energy Storage Systems Using Annualized Life Cycle Cost of Storage (LCCOS) and Levelized Cost of Energy (LCOE) Metrics. Journal of Energy Storage, 29, 101345. DOI: 10.1016/j.est.2020.101345.
Go to original source...
- OPSD. 2019. Open Power System Data: A Free and Open Platform for Power System Modelling [online]. Available at: https://open-power-system-data.org. [Accessed 2019, August 31].
- PacifiCorp. 2016. Battery Energy Storage Study for the 2017 IRP [online]. Available at: https://islandedgrid.org/wp-content/uploads/2017/11/Battery-Energy-Storage-Study-for-2017-IRP_DNVGL.pdf.
- Paschotta, R. 2012. Jahreshöchstlast [online]. Available at: https://www.energie-lexikon.info/jahreshoechstlast.html. [Accessed 2021, February 12].
- Popp, M. 2010. Speicherbedarf bei einer Stromversorgung mit erneuerbaren Energien. Berlin, Heidelberg: Springer. DOI: 10.1007/978-3-642-01927-2.
Go to original source...
- Rahman, M. M., Oni, A. O., Gemechu, E. & Kumar, A. 2020. Assessment of Energy Storage Technologies: A Review. Energy Conversion and Management, 223, 113295. DOI: 10.1016/j.enconman.2020.113295.
Go to original source...
- Schill, W.-P. & Zerrahn, A. 2018. Long-Run Power Storage Requirements for High Shares of Renewables: Results and Sensitivities. Renewable and Sustainable Energy Reviews, 83, 156-171. DOI: 10.1016/j.rser.2017.05.205.
Go to original source...
- Schmidt, O. 2018. Levelized Cost of Storage Gravity Storage [online]. Imperial College London. Available at: https://heindl-energy.com/wp-content/uploads/2018/10/LCOS_GravityStorage-II-Okt-2018.pdf. [Accessed 2019, March 31].
- Smallbone, A., Jülch, V., Wardle, R. & Roskilly, A. P. 2017. Levelised Cost of Storage for Pumped Heat Energy Storage in Comparison with Other Energy Storage Technologies. Energy Conversion and Management, 152, 221-228. DOI: 10.1016/j.enconman.2017.09.047.
Go to original source...
- Sterner, M. & Stadler, I. 2019. Handbook of Energy Storage: Demand, Technologies, Integration. Berlin: Springer. DOI: 10.1007/978-3-662-55504-0.
Go to original source...
- Umwelt Bundesamt. 2020a. Erneuerbare und konventionelle Stromerzeugung [online]. Available at: https://www.umweltbundesamt.de/daten/energie/erneuerbare-konventionelle-stromerzeugung. [Accessed 2021, January 10].
- Umwelt Bundesamt. 2020b. Zeitreihen zur Entwicklung der erneuerbaren Energien in Deutschland [online]. Available at: https://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.html. [Accessed 2021, January 14].
- Umwelt Bundesamt. 2020c. Häufige Fragen zur Energiewende [online]. Available at: https://www.umweltbundesamt.de/themen/klima-energie/klimaschutz-energiepolitik-in-deutschland/haeufige-fragen-zur-energiewende. [Accessed 2021, February 7].
- Weitemeyer, S., Kleinhans, D., Vogt, T. & Agert, C. 2015. Integration of Renewable Energy Sources in Future Power Systems: The Role of Storage. Renewable Energy, 75, 14-20. DOI: 10.1016/j.renene.2014.09.028.
Go to original source...
- Zakeri, B. & Syri, S. 2015. Electrical Energy Storage Systems: A Comparative Life Cycle Cost Analysis. Renewable and Sustainable Energy Reviews, 42, 569-596. DOI: 10.1016/j.rser.2014.10.011.
Go to original source...
This is an open access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.